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Abstract

Bachelor of Engineering (Hons.)

Human-in-the-loop, Interpretable, Sample-e�cient Reinforcement Learning for

Behaviour Change Interventions

by Advait Rane

Habits help sustain behaviour change, but forming habits is di�cult. Habit formation can be

supported with computer-generated interventions. However, for these interventions to be helpful

they should be personalised and context-specific. For a healthy interaction with the user the

system should learn to adapt to the user fast, and the user should be able to understand and

control its behaviour. Thus, sample-e�ciency and interpretability are integral to the system.

As a part of this thesis, we relied on Reinforcement Learning (RL) to learn the most beneficial

interventions. We built an RL environment and designed datasets to test the above desiderata

in an RL model. We evaluated the use of di↵erent sequence models to learn user behaviour

patterns to make learning sample-e�cient. We further evaluated the performance of di↵erent

RL algorithms to determine the best choice in terms of sample e�ciency and integration of

human guidance. To test the models, we used computer-usage data to learn to give calming

interventions during computer usage. We also built and deployed a Chrome extension which

gives calming interventions based on the user’s preferences while browsing the internet.

http://www.bits-pilani.ac.in/
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Chapter 1

Introduction

1.1 Habit Formation for BCI

Behaviour change is important for mental and physical well-being. However, changing one’s

behaviour systematically requires e↵ort and is often di�cult to sustain. One can set goals to

achieve and bring about behaviour change. However, purely goal-directed behaviour change

approaches lead to relapse patterns. While there is higher adherence to the goals in the short-term,

retention of the changed behaviour in the long-term is low [31].

Habits, on the other hand, are automatic actions directed by the context[32]. Once habits are

formed, they are easier to sustain. Habits can thus lead to higher long-term retention of changed

behaviour and habit formation can support behaviour change maintenance[16, 31].

Habit formation can be assisted by computer-generated interventions. However, habits are a

highly context-specific and personal actions. For interventions to be beneficial, they should be

directed by the context and the user’s preferences. They should be given in personalised and

fine-grained contexts. Furthermore, the user should have a complete control and understanding

of these interventions and their generation. Thus, for a computer to give habit formation

interventions, it should take the context and the user’s guidance as input and determine the

most beneficial interventions to give while adapting to the user fast and allowing the user to

interpret and modify its functioning. Sample-e�ciency, interpretability, and Human-in-the-Loop

learning are thus important desiderata for such a system.

1.2 Reinforcement Learning

Reinforcement Learning is an approach to train an agent to take the most rewarding actions in

an environment based on the state of the environment. At each time step the agent receives the

1
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Figure 1.1: RL setting, shows how the agent interacts with the environment. Source - [25]

state from the environment and returns an action, following which the environment gives the

agent a reward and the next state in the next time step.

It can be formalised as a Markov Decision Problem (MDP), hS,A,R, P, ⇢0i. S is a finite set

of states of the environment. A is a finite set of actions that the agent can take. R is the

reward function which gives the reward at each time step, Rt = R(st, at, st+1). P is a transition

probability function, P (s, a, s0) = P[St+1 = s0|St = s,At = a], which gives the probability of

the next state being s0 if the action a is taken in the state s. A sequence of states and the

corresponding actions is called a trajectory, ⌧ . ⇢0 is a distribution over S for the start state. A

discounting factor � 2 [0, 1] is used to promote immediate rewards and discount future rewards.

The agent aims to maximise the discounted return of the trajectory it takes, R(⌧) =
P1

t=0 �
tRt.

To do this, it learns a policy ⇡(a, s) = P [At = a|St = s] which directs the trajectory. Furthermore,

given a policy we can define a value function for each state, V ⇡(s) = E⌧ ⇡[R(⌧)|s0 = s] and an

action-value function(or Q-function) for a state-action pair, Q⇡(s, a) = E⌧ ⇡[R(⌧)|s0 = s, a0 = a].

The optimal value function for the optimal policy is given by V ⇤(s) = max⇡ V ⇡(s) and the

optimal action-value function by Q⇤(s, a) = max⇡Q⇡(S, a)

There are several approaches to learn the optimal policy. Broadly, RL algorithms can be divided

into model-based and model-free algorithms. Model-based algorithms learn a model of the

environment, i.e. the transition function, which can be used for planning as well as sample data

generation to learn the policy. These algorithms are usually more sample-e�cient. Model-free

techniques learn a control policy directly without modelling the environment. Policy learning

can be done directly by policy optimisation algorithms which optimise the policy to maximise

the value function. It can also be done indirectly by Q-learning which learns the action-value

function and chooses the actions which maximise it. Policy optimisation algorithms are usually

on-policy, i.e. the trajectory used to train is collected using the recent version of the policy.

Q-learning is typically of-policy, i.e. it uses trajectories collected irrespective of the trajectory.

In this thesis, we primarily explored contextual bandits, which have been the state-of-the-art

approach for behaviour change interventions, and deep Q-learning. We combined these techniques
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with human guidance to give the user control and Bayesian estimation to make the intervention

generation simple to interpret. We analysed model-based approaches as sample-e�ciency was a

key consideration to adapt to the user fast.

1.3 Computer usage

Our computer usage has significantly increased over the last year through the COVID-19

pandemic. Increased computer time, whether due to work or leisure activities, may have become

unavoidable for many. However, this increased usage comes with a few challenges. We have had

to learn to set boundaries between our work and home lives, and take care of our mental health

as stress has increased. We believe that our approach to behaviour change interventions can be

especially useful in terms of regulating computer usage.

To this end, we incorporated behaviour change interventions in Chrome browser usage and even

evaluated the use of such a system for computer usage in general. We developed a Chrome

browser extension through which a user can set micro-interventions for themselves on specific

websites. This would enable users to take calming breaks in the middle of work or social

media usage on the Chrome browser. We conducted a user survey to understand the kinds of

breaks users preferred to take in the middle of computer usage. Furthermore, to extend these

interventions to general computer usage, we combined our approach with data obtained from a

computer activity tracker called ActivityWatch[2] which allows users to track their computer

usage. Our approach would allow users to not only track their computer usage but also set and

receive context-specific interventions to take breaks. Thus, the capabilities of our approach to

behaviour change interventions to help users build calming habits which alleviate stress and

improve mental health become evident in the context of computer usage.



Chapter 2

Literature Review

2.1 Behaviour Support and MHealth

Computers and machine learning have been explored as tools to aid behaviour tracking and

behaviour change. Tools like tracking devices and mobile/computer applications have been

developed and studied to help users like Quantified-Selfers track their behaviour [6, 5, 13]. These

approaches require manual-tracking or self-analysis and do not implement generated interventions.

They identify the lack of context-tracking[6] and misalignment of user and system goals[13] as

problems hindering behaviour change. They also discuss ways to improve user-engagement to

support goal-based behaviour change.

Computer-tailored interventions have been studied for health-behaviour change in specific use

cases such as to stop smoking, increasing physical activity, promoting a healthy diet, and

receiving regular mammography screening[15]. In the use case of online computer usage, rotating

interventions are more e↵ective as opposed to static interventions but they also result in higher

attrition[14]. This study also highlights that users prefer to have control over the intervention-

generation system. Micro-interventions which direct users to popular web applications to alleviate

stress have also been studied[23]. These were augmented with ML-based recommender systems

to determine which intervention would be ideal based on user-information such as personality

features and contextual-information obtained from phone data.

Reinforcement Learning (RL), and specifically contextual bandits, has been identified as a means

to learn to give Just-in-time-adaptive-interventions (JITAI). Contextual bandits-like policies

were learned to determine the type of intervention message(positive or negative) to send diabetes

patients to increase physical activity based on patient demographics and past activity[34]. RL

can be leveraged to learn personalised goals and interventions in mobile fitness and mobile

health(MHealth) applications[17, 36]. [36] promotes physical activity by determining daily goals

4
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for number of steps using inverse reinforcement learning. An online, actor-critic, contextual

bandit is used to determine whether to give an activity suggestion based on simplified contexts

in [17]. Further improvements to RL algorithms in MHealth applications have been suggested,

such as sharing information between similar users[38] and initialising the online algorithm with

previously collected data[37]. Algorithmic improvements to contextual bandits have also been

suggested to determine the e↵ectiveness of generated interventions[33].

Beyond these applications, RL has also been leveraged for interventions in healthcare[35]. RL

has been used to determine the most e↵ective Dynamic Treatment Regimes (DTR) also known

as adaptive interventions. DTRs, similar to an RL setting, involve a course of actions (such as

drug dosage or treatment type) to be taken at a time point based on the patients treatment

history and current health.

2.2 Sequence Modelling

Sequence modelling is relevant to this work as a means to model user behaviour pattern sequences.

This would allow the algorithm to predict user behaviour with or without interventions. Since

the RL agent acts upon the user, sequence modelling could be used to create a model of the

environment i.e. the user. We thus have a short review of di↵erent types of sequence models. A

complete review of sequence modelling literature is beyond the scope of this thesis.

There is a vast literature in the area of sequence modelling. Recurrent Neural Networks

(RNNs) can be used to process sequential data in applications like machine translation and

speech processing[27, 9]. To learn longer-term dependencies Long-short term memory cells,

or LSTMs, can be used[10]. Convolutional Neural Networks (CNNs) have also been used for

time-series modelling and text-to-speech translation[24, 22]. These approaches use dilated causal

convolutions to increase the receptive fields of CNNs and learn dependencies over longer sequences.

State-of-the-art language models use Transformers[30] to model long-term dependencies using

attention. Attention models have the added benefit of providing interpretable attention values.

Furthermore, transformer training is parallelizable as opposed to RNNs.

More recent sequence modelling algorithms combine di↵erent techniques such as attention

and Variational Auto-Encoders (VAE). Learning latent representations in sequences can be

useful to model the sequence as well as further use those sequences for decision-making. The

Vector-Quantised VAE (VQ-VAE)[21] provides a way to learn these underlying representations

in videos, speech, etc. The Temporal Di↵erence VAE (TDVAE)[11] provides a means to learn

an environment model which learns an abstract state to represent the world. Beyond these
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approaches, the Temporal Fusion Transformer (TFT) [19] combines recurrent layers with self-

attention layers to learn temporal dependencies at di↵erent timescales in an interpretable

manner.

2.3 Safety in RL

Safety in the context of RL refers to learning the optimal policy in a safe manner without causing

any harm. Safety is an important concept in our work since we are using RL to learn the optimal

intervention policy, but it should not learn these at the cost of causing harm to the user’s routine

or mental health.

Safe RL has been extensively studied and surveyed in literature [8]. This work highlights the

modification of the exploration process by incorporating external knowledge as a way to introduce

safety while learning the optimal policy. Safe exploration is a key idea in RL safety, and there are

several approaches to inform the exploration process with human advice[28, 20, 29]. RL models

also need to be evaluated for safety before training. Safety Gym[1] and AI safety Gridworlds[18]

have suites of environments that measure how well agents respect safety constraints such as safe

interruptibility and constrained exploration.



Chapter 3

Reinforcement Learning

3.1 RL Environment

Developing the RL environment was the first step we undertook to set up the framework

in which to train and evaluate our agents. There are several open-source RL environments

such as those in the OpenAI gym[3]. These environments can be used to train and compare

di↵erent RL algorithms on tasks as simple as the cart-pole problem and as complex as Atari

arcade games or 2D/3D robot simulations. However, these environments would not allow us to

evaluate the model’s behaviour in the real-world behaviour change setting. We thus developed an

environment to simulate a user’s behaviour based on an input routine and preferred interventions.

We developed this environment to work with the OpenAI gym environment interface as well as

Tensorflow’s tf agents environment interface so that we could use these interfaces to train RL

algorithms. We outline the functioning of the PAL environment in the following subsections.

3.1.1 Input

In the simplest usage, the input to the environment would provide a user’s routine, the ideal

interventions to bring about a change in behaviour, the interventions suggested by the user as

guidance, the user’s behaviour change objectives, and the user-given rewards. Each of these

inputs is given through a CSV file.

The user’s routine is passed as a grid with each episode representing a row and each column

representing a unique time step. The content of each cell in the grid represents the activity the

user engages in the corresponding episode at the given time step. These activity observations

can also be generated or inferred as we will describe later. The intervention files are split into

two types. The first kind has interventions as rules, for example, the user stops using their

laptop at 5:00PM everyday if they receive an intervention between 4:50PM and 5:00PM while

7
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using a laptop. The second type has interventions as instances, for example, an intervention

in the third episode at 10:00AM when the user is browsing Facebook would remind them to

take a more fulfilling break. The ideal interventions and the user-given interventions are thus

split into two CSV files each. The ideal interventions directs the environment, where as the

user-given interventions would direct the agents exploration process. Furthermore, the rules

can be added, updated, or deleted as the episodes progress. The interventions are linked to the

user’s behaviour change objectives. These objectives can be specified as rules which indicate

the changed behaviour for individual episodes(days) or sets of episodes. These can be positive

objectives(for example, take a calming break after using the Mail application everyday) or

negative objectives(for example, do not use use the Messages application between 5:00PM to

6:00PM on weekends. Finally, the user given rewards are specified as instances at which rewards

are to be given to the agent if the user successfully performed the desired activity. Positive

rewards promote an activity(for example, reward the agent with +10 if the user takes a calming

break at 10:00AM) and negative rewards would lead to avoidance of those activities(for example,

reward the agent -10 if the user ignored the intervention and used the Messages app at 5:05PM).

This input is parsed into a suitable form by a data parser script. The data parser converts the

input into pandas Dataframes with pre-defined formats so that they can be processed by the

environment and agents as needed. Refer to appendix A for an example of the input files.

3.1.2 Observation Generation

The environment simulates a users behaviour by generating a routine with appropriate behaviour

changes and providing the current activity as observations to the agent along with the user-given

rewards if any at each time step. The functioning of the environment is divided into two

simulators at the lowest level. The output of these simulators is combined to generate per time

step observations which are the passed to the environment interface to further pass to the agent.

The routine simulator simulates a routine at the start of an episode which represents the

behaviour of the user in the absence of any behaviour change interventions. This routine is

sampled from the input routine provided to the environment based on the episode. The routine

generation was not done using a generative ML model so as to be a better reflection of actual

user behaviour and real-world conditions. While this would impose a limitation on the amount

of training data, our model evaluations would be indicative of how the model would actually

perform in an active learning setting with limited data for each new user.

The change simulator samples the interventions and their corresponding behaviour changes from

the input data based on the episode at the start of each new one. It further divides the changes

into three kinds. Time-based changes are those which are directed by a start time and end

time of a desired or undesired activity. Context-based changes are those that are directed by
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contexts apart from time, e.g. take a break after reading mails irrespective of the time of the

day. Quantity-based changes specify the maximum or minimum number of times an activity

needs to be done, e.g. go to Twitter no more than three times a day.

The output of these simulators is simulated at the start of each episode. The data simulator then

combines these to generate the routine. The data simulator currently implements the time- and

context-based changes but not the quantity-based changes. At each time step it generates the

current activity (or current state). When it receives an action denoting an intervention, it checks

if this intervention produces a change in the routine based on the change simulators output. If

so, it makes the corresponding change in the routine simulated by the routine simulator. For

positive objectives, the change would involve adding the action into the routine based on the

start and end time(time-based) or in relation to another activity(context-based). For negative

objectives, the change replaces the undesired activity with the next activity the user would

engage in the simulated routine.

The entire process is mediated by a data mediator. The mediator first employs the data parser

to pass the input to the simulators. It then runs the simulators to get the state at each time step,

which it communicates to the environment interface. It also passes actions from the environment

interface to the data simulator. Thus the observations are generated on a per time step basis.

During the implementation of the simulators, I primarily contributed to the data simulator as

well as the integration of the di↵erent parts.

3.1.3 Reward Generation

The reward generation is done directly in the environment interface. In our current environment

structure, the only rewards the agent receives are from the user. The environment does not

determine any rewards based on the changes it makes. This has been done so the user has

complete control over any rewards that the agent receives. If the rewards were to be simulated

inside the environment, the misalignment of this simulator and the users goals would create

problems in terms of the e↵ectiveness of the RL as well as its safety.

The user rewards parsed by the data parser are directly passed to the environment interface by

the data mediator. The environment gives the agent rewards based on the instances specified in

the parsed user rewards. The environment simply has to compare the current observations in

terms of the episode, time step, and activity with the desired state in the user rewards and give

the reward if the conditions are satisfied. Thus, the rewards are given by the environment but

they are solely directed by the user.
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3.1.4 Visualizations

We added several visualisations to the environment to help interpreting the agents behaviour

based on the input. There are three main visualisations which show the trajectory of the agent

in the environment.

The first visualisation shows the entire history for all the trajectories. It displays the state at

each time step, accompanied by an action if taken and a reward if received at that time step.

The second plot shows only the actions and rewards. This plot helps to identify which actions

correspond to which rewards and whether the agent learns to repeat those actions while reducing

unwanted actions. The third plot shows the agents actions along with ideal interventions which

direct the environment. This plot is helpful to identify the actions the agent learns as compared

to the actions it should learn. Figure 3.1 shows the plots for a single run with simple data.

Besides these we also plot the average loss an the returns of the agent across the episodes in the

training.

Furthermore, we also developed Javascript visualisations for the first three plots which run

on a browser in an interactive manner. This provides an easier way to visualise the episodes,

especially for larger episodes with a sparse but meaningful information. The visualisations allow

users to zoom into specific time windows to observe the user activities and the agent actions and

rewards. Figure 3.2 shows the Javascript visualizations.

3.1.5 Extensions

The environment dynamics described above work well for simple test cases. For example, for

small episodes the observations file can be created easily but for longer episodes having a CSV

with as many columns as time steps might be di�cult. We incorporated extensions to this simple

environment structure to provide for more complex dynamics. We added functionality to convert

data from di↵erent sources into an intermediate observations CSV file which can be passed to

the environment.

Activity Watch[2] is an open-source computer/mobile application which tracks users device

usage. It is a time tracker, which essentially tracks the time spent on di↵erent applications

during computer usage. Since we wanted to apply our system to the case of user computer usage

we extended our environment to easily integrate with Activity Watch. Activity Watch provides

a JSON file output which logs the users’ device usage along with the application name, window

title, and time spent. We provide a script to convert this JSON file into an observations CSV file,

where each activity is given by the application being used at that time point. This script runs

automatically if the user indicates the the source of the observations data is Activity Watch.
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(a) Entire history (b) Actions and rewards (c) Actions and ideal actions

Figure 3.1: RL Environment visualizations
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(a) Entire history in Javascript visualizations

(b) Actions and rewards in Javascript visualizations

(c) Actions and ideal actions in Javascript visualizations

Figure 3.2: RL Environment Javascript visualizations
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Besides this, we also added a functionality for the user to generate their own routines. This

can generate simple repeating routines by combining sinusoidal waves. This functionality is

more for experimental purposes, as it allows us to evaluate the performance of di↵erent agents

on routines of varying complexities. These routines are generated in sets of episodes combined

by concatenating them one after another. For each set, sin waves of di↵erent frequency and

magnitude are combined by addition. Discontinuity and noise can be added to these generated

routines.

The conversion of Activity Watch data conversion was primarily worked on by my colleague.

3.2 RL Agents

We evaluated the performance of a several RL agents on the environment we developed. To begin,

we created a simple agent which was primarily guided by the user’s preference. To evaluate more

complex algorithms we used the TensorFlow Agents library[12]. We integrated our environment

with this by wrapping it inside a tf agents environment.

3.2.1 Simple Agent

We first attempted to create a model which was solely directed by the human user. This would

ensure alignment with the user’s goals with controlled exploration around the user’s preferences

if they were unsuccessful. We divided the policy into two separate modules, one for exploration

and one for exploitation. The exploration module explores around the user’s preference and

the exploitation module exploits actions which have previously resulted in higher rewards. The

functioning of both these modules is similar to probabilistic models. We used a probabilistic

approach for these modules for the following reasons-

1. Probabilistic models learn meaningful patterns even in limited data. This is important to

deal with sample e�ciency

2. Probabilistic models with explicit distributions for di↵erent variables are interpretable,

through probabilistic measures like credibility intervals and entropy. This allows us to

model uncertainty simply.

In the construction of this model, I primarily contributed to the Exploitation module whereas

my colleague worked on the exploration module.
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3.2.1.1 Exploration

The Exploration module uses the user preferences to represent appropriate intervention time as

Gaussian distributions over time. The user preference indicates the interval in which the user

would prefer an intervention. The Gaussian is centered at the middle of the interval specified by

the user. Since the entire interval should indicate a good intervention, the standard deviation of

the Gaussian is set to cover this interval. Therefore, the Gaussians are constructed as,

µ =
start time+ end time

2
(3.1)

� = end time� start time (3.2)

For each intervention specified by the user, a Gaussian represents the probability of an intervention

at that time being successful. These exploitation distributions thus give a high probability for

actions at the times specified by the user.

3.2.1.2 Exploitation

The Exploitation module represents every possible intervention as a binomial distribution with

a beta prior. A binomial distribution is su�cient since we have just one action, which is to

give an intervention. All possible interventions are covered by having beta distributions for an

intervention at a time, during an activity, or in an episode. A state is given by a combination

of these three. For previously seen states, separate beta distributions are maintained. For

unseen states, if any component(activity A, time T, or episode E) of it has been seen before the

probability distributions can be combined naively by assuming the components to be independent

variables,

P(action = 1|A, T ) = P(action = 1|A)P(action = 1|T )
P(action = 1)

(3.3)

These Beta distributions are initialised with minimally informative or uninformative priors,

i.e. Je↵erey’s prior or Bayes’ prior. Probabilistic updates are made to get the posterior from

the prior based on the observed rewards. If an action is successful, the first parameter of the

corresponding Beta distributions is updated and if it is unsuccessful the second parameter is

updated. This the exploitation model can be represented as,

P(action = 1|context) ⇠ Binomial(p) (3.4)
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p ⇠ Beta(↵,�) (3.5)

To update the Beta distributions,

↵new = ↵+ 1, if reward > 0

�new = � + 1, otherwise

These Beta prior/posterior distributions can be further used to determine the uncertainty of the

estimate. We provide two measures to determine the uncertainty,

1. Credibility interval: This gives an interval within which the value of the modelled variable

lies with a certain probability. We use a 95 percent credibility interval by default. The

smaller the credibility interval, the lower the uncertainty.

2. Entropy: The entropy represents the degree of uncertainty in the value of the modelled

variable. The lower the entropy, the lower the uncertainty of our estimate.

These uncertainty measures are important as they are used to choose between the exploration

module or exploitation module. We set a threshold on the uncertainty below which we should

use the output of the exploitation module. If the exploitation module has a higher uncertainty,

we prefer to perform a limited exploration around the user’s preferences.

3.2.1.3 Visualization

We added visualizations to these modules to make it easier to interpret the working and evaluate

performance. These visualizations plot the di↵erent probability distributions along with their

mean or standard deviations to indicate the trend in the updated distributions over time. Figure

3.3 shows an example of a plot which shows the value of the mean of a particular Beta distribution

over the episodes.

3.2.2 TensorFlow Agents

As mentioned previously, we integrated the environment with TF agents environments. This

allowed us to use the di↵erent RL agents implemented in the library with our environment. We

thus evaluated the performance of several agents for the task.
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Figure 3.3: Plot of mean value of a Beta distribution over the episodes

Since most of the related work in RL for behaviour change interventions used contextual bandits,

we evaluated the performance of di↵erent contextual bandit algorithms. We trained contextual

bandits with Thompson Sampling, Linear UCB, and Neural linear UCB algorithms. Contextual

Bandits represent the RL problem as a problem of choosing the correct action based on the

context in independent observations. Thompson sampling represents the di↵erent actions with

Binomial-Beta distributions. The UCB(Upper Confidence Bounds) algorithms use confidence

bounds to explore actions which have a lower confidence so as to perform e�cient exploration.

The UCB algorithms can be combined with a neural network to process the context(observation)

in the neural UCB algorithm.

Furthermore, we also evaluated the performance of Q-learning algorithms. We evaluated a

simple Deep Q Network(DQN) which represents and learns the Q-function as a neural network.

We further evaluated the performance of the DQN C-51(Rainbow) agent which makes several

improvements on DQN in traditional RL problems.
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Chrome Extension

We developed a Google Chrome Browser extension to give interventions to users while browsing

the internet. Since we identified computer usage as a viable area for our behaviour change

interventions, we wanted to develop a system which could collect computer usage data and deliver

interventions to users. We decided to develop a browser extension to target the most widely

used application of computer usage i.e. browsing the internet. Internet browsing provides a good

context for behaviour change interventions as the internet browsing often leads to unhealthy

habits [4]. Furthermore, this is also a rich source of data on which we can train and evaluate our

models.

The PAL extension has two main objectives,

1. Give the user calming interventions on specific websites as set by the user.

2. Store the user’s browsing information (with their permission) on a firebase server.

Since I primarily worked on the first objective, it has been detailed in the following sections.

The extension keeps track of the time spent on each open tab. If the user sets a website as an

intervention context, the intervention appears on the screen when using that website after a

user-specified interval.

4.1 Options Page - User Input

The options page makes for the initial interaction between the user and the extension. Here the

user can set which websites the user would like an intervention on. The user also provides an

interval after which they would like the intervention. This input might be taken to correspond

to the user-given guidance for an RL model.

17
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Figure 4.1: PAL extension options page

The intervention given by the extension is a calming screen, detailed in the next section. This

screen has an accompanying message to the user. The user can customise this message to their

preference.

4.2 Intervention Popup

The intervention is introduced as a calming break to the user. This aligns with out goal of

alleviating stress while using the computer. The intervention appears as an overlay over the

browser screen. It has di↵erent calming exercises help the user take a meaningful break.

4.2.1 Breathing Patterns

Controlled breathing helps with alleviating stress. The intervention overlay has an animation

which directs the user to control their breathing pattern. The user can select one of the given

patterns or customise the breathing pattern. The user can also pause or play the animation

video whenever they like.
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Figure 4.2: PAL extension breathing patterns

Figure 4.3: PAL extension ambient screen

4.2.2 Ambient Video

Alternatively, the user can watch and listen to an ambient video. This allows the user to engage

in a more passive break. Currently the intervention has a limited option for the ambient video,

but these can be extended in future works. The video too can be paused, played, or muted.
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Figure 4.4: PAL extension journal option

4.2.3 Journal

The user also has the option to journal during the break. The intervention screen has a text

input field which prompts the user to write message about how they feel. This input resembles a

text message to induce familiarity. Journaling has been recognised as a healthy habit to cope

with stress[26]. Our intervention prompts the user to talk about their emotional state.

4.3 Future Work

The PAL extension, while helpful to give users calming breaks, does not learn to adapt to the

user. To add learning capabilities, the extension must be combined with RL agents described

in chapter 3. Thus, the calming interventions will receive rewards from the user if they are

appropriate and the system will learn to give the user interventions which the user prefers over

time.

Furthermore, the Chrome extension only allows us to observe and act on the browser. To tackle

computer usage more e↵ectively, the system must be expanded beyond the browser. This can be

done by creating a computer application which can give interventions like the extension and

store the computer usage data for training the agent.
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Sequence Modelling

5.1 Models

As discussed in chapter 1, model based RL approaches are more sample e�cient. The model can be

used to learn the environment dynamics and support planning as well as to generate imaginary

trajectories which can be used for training in the absence of more data. Our environment

represents user behaviour over time. Thus a time series model or sequence model can be used to

learn an environment model. We thus evaluated the performance of di↵erent sequence models.

My colleague and I worked together to evaluate the performance of the di↵erent models.

5.1.1 Recurrent Neural Networks

We evaluated the performance of Long-Short Term Memory(LSTM) as well as Gated Recurrent

Units(GRU) cells for recurrent networks. We evaluated the performance of small two-layer

networks. The first layer has a recurrent connection, either a LSTM or a GRU layer. The second

layer is a fully connected layer which predicts the final output. The recurrent layer output has

128 hidden units and the FC layer output has the dimensions of the output. Dropout is applied

on the middle layer to avoid over-fitting. The models are optimised with an Adam optimiser.

The models are implemented using TensorFlow and Keras.

5.1.2 Convolutional Neural Networks

We evaluated the performance of a small CNN to compare with RNNs. We used a three-layer

network with one CNN layer and two fully-connected layers. Since we were training on a time

series, the convolutional layers were one-dimensional with a kernel size of 5 and 32 filters. The

hidden layer was 128 dimensional. The final layer was used to predict the next two time points
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in the series. The dimensionality of the last layer matched the dimensions of the output for two

points. The Adam optimiser was used to train the model. It was implemented in TensorFlow

and Keras.

5.1.3 Transformer

We trained a vanilla Transformer on time series data to evaluate the performance of simple

attention based sequence models. The Transformer implementation uses positional encoding,

multi-head self-attention encoder layers, and masked multi-head decoder layers as described in

[30], however for a simple implementation we used a single attention head. The Encoder and

Decoder both have two layers. The models used 128-dimensional hidden layers and 6-dimensional

embeddings for the data. The model is optimised using an Adam optimiser and implemented in

TensorFlow and Keras.

5.1.4 LSTM Auto-Encoder

We also a trained an Auto-Encoder for sequence-to-sequence modelling to predict the next

time steps given the previous observations. We used a small AE with a two-layer encoder and

two-layer decoder. The first layer in both the encoder and the decoder is a recurrent LSTM

layer. This layer has a 64-dimensional output with a Dropout applied on it. The Auto-Encoder

has the additional capability of learning meaningful latent representation in this space which

can be decoded to get the output. The AE uses the previous five time steps to predict the next

two time steps, similar to the CNN. The models are optimised with an Adam optimiser. The

models are implemented using TensorFlow and Keras.

5.1.5 SeriesNet

The SeriesNet is a CNN which is used for time-series data like speech generation. This CNN

uses dilated convolutions. These increase the receptive field of the convolutional layer, thus

improving the networks capability to model longer-term dependencies.

The model has three identical blocks in series. Each block comprises three one-dimensional

convolutional layers. The first dilated CNN layer feed into two separate CNN layers. One CNN

is used to get the output of the block. The other is used to get a skip connection to the final

output of the model. The output of each block has a residual connection. The dilation of the

blocks doubles every layer, which allows the receptive field to grow very large. Each block uses

eight convolutional filters. The final output of all the blocks is calculated by a CNN layer on the
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concatenated skip connections. Additionally, the SeriesNet also has a single-layer LSTM which

processes the input to directly add to the final output.

The model uses the previous 20 time steps to predict the next 20 time steps. It optimised with

Adam and implemented in TensorFlow and Keras.

5.1.6 VQ VAE

The VQ VAE is an Auto-Encoder with a Vector Quantization (VQ) layer on the latent rep-

resentation between the encoder and decoder. This allows us to learn a discrete latent space

representation of the time series. The encoder has three one-dimensional convolutional layers

which pad the input to get an output of as many time steps as the input. These layers convert

the input to a 64-dimensional vector. The encoder then has a residual convolutional layer. The

output of the encoder is projected to a discrete number of 64-dimensional vectors by the VQ

layer. The VQ layer uses exponential moving averages to update the discrete vectors. The output

is further passed to the decoder with three transposed one-dimensional convolutional layers along

with a residual convolutional layer after the first transposed layer. This gives the final output

of the model. The VQ VAE is trained to take the previous 20 time steps as input and predict

the next 5 steps. The Adam optimiser is used for training. The model is implemented using

Sonnet[7].

5.2 Data

We evaluated the performance of the aforementioned sequence models on generated time-series

data. This data is generated by combining sinusoidal waves in di↵erent combinations of number,

frequency, and amplitude. Discontinuity, noise, and trends can be added to the generated series.

Generated data is used to evaluate the performance of the models on data of varied and controlled

complexity.

We used the data generation mechanism to generate seven di↵erent kinds of datasets. The

simplest way to increase variation is by increasing the frequency of the repeating data. The

di↵erence between the frequencies of combined waves can be manipulated to create a time series

with long and short term dependencies. The amplitude can be increased to increase the number

of states while maintaining the overall frequency of the data. Noise can be added in two ways.

The first is to introduce a discontinuity, representing a lack of data. The second is to add small

Gaussian noise to each time point. Another form of discontinuity is introduced by incorporating

completely missing data, i.e. splicing out portions of the time-series. Finally an overall trend

can be added to the time series, such as a linear or quadratic trend. Figure 5.1 shows all the

generated timeseries datasets.
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(a) High frequency data (b) Di↵erent frequency data

(c) More number of states (d) Discontinuity as patch

(e) Added noise (f) Discontinuity as missing data

(g) Linear trend

Figure 5.1: Time series data generated
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RL Test Cases

Since behaviour change is deeply related to the psyche of the user, we decided to evaluate

our solution in terms of its interaction with the user. We drew on literature in RL safety to

identify relevant points of consideration. We primarily drew inspiration from the DeepMind

safety gridworlds[18], in terms of framing and visualizing our test cases. However, unlike the

Gridworlds these test cases are specific to our problem and environment.

We designed simplified versions of real world situations and represented these as a grid for

easier interpretation. This grid represents a routine where each row is an episode and each

column is a time point. The ideal interventions are represented by highlighted cells. Time

based interventions are represented by grey and activity based interventions are represented by

matching the colour of the activity. These grids can also be looked as the observations input file

passed to the environment, along with additional information. The di↵erent tests are described

in the following sections. For the purpose of brevity, although we discuss all the test cases we

show only those which convey the relevant information.

6.1 Guided Exploration

The primary goal of our agent is to explore safely around the user’s preferred actions to improve

on them. However, the agent should only try to improve if the user’s goals are not being met.

The primary objectives are those set by the user and not the agent. Safe exploration is a relevant

consideration in terms of-

1. Reducing user annoyance due to random exploration with too many actions. Excessive

interventions might lead to annoyance and lack of retention

25
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Figure 6.1: Matching ideal and user interventions

Figure 6.2: Di↵erent ideal and user interventions

2. Avoiding giving interventions which cause the user to enter harmful behaviour patterns.

For example, an intervention at a particular time may lead the user to taking an unfulfilling

break, say scrolling on social media for too long, and this can a↵ect the user’s productivity

as well as mental health. These situations need to be avoided.

To test the performance of the agents’ exploration we designed situations in the environment

where the ideal correct intervention does not match with the intervention given by the user.

If the agent avoids exploration it will perform sub-optimally, even receiving negative rewards

from the user. Extensive exploration would also lead to sub-optimal performance since the ideal

interventions are sparse. The extent of the di↵erence between the ideal intervention and the

user given intervention would determine the extent of exploration required. Thus, we designed

three test cases with increasing di↵erence.

In the simplest test case the ideal interventions would perfectly align with the user’s interventions.

In this situation any additional exploration might cause harm. Since the user’s goals are being

achieved, the agent should avoid further exploration in an attempt to optimise its own objective.

Satisfying the user’s goals should be the primary objective. This can be seen in figure 6.1.

In the next two test cases, the user given intervention does not match with the ideal correct

intervention. The di↵erence between those is greater in the second, requiring greater exploration.

These can be seen in figure 6.2.

In the final test case, we evaluate the performance of the agent when it satisfies the user’s goals

but can explore to learn alternative good interventions. In this case, the agent does not need to

explore, but exploration leads to possibly better results. It would be interesting to observe how

the agent strikes the balance between satisfying the user’s goals and exploring for better results.

This can be seen in figure 6.3.

Furthermore, these test cases can also be represented in terms of activity based interventions.
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Figure 6.3: Overlapping ideal and user interventions

Figure 6.4: Change in intervention

Figure 6.5: Change in routine

6.2 Personalizing

Habit formation interventions are most useful when they appear in personalised contexts. To

improve the user’s experience, our solution must adapt to the user’s personal preferences and

behaviour rapidly. Since behaviour patterns are highly dynamic, the agent must be able to

keep up with changing behaviour patterns and goals. Our next set of test cases test the agent’s

abilities to do this at varying levels of dynamism.

The first few cases evaluate the performance of the agent due to a change in a particular aspect

of the user’s behaviour. This can be-

1. A shift in the preferred intervention, for time or activity-based interventions. For example,

the user prefers an intervention at 8:00AM on weekdays but 10:00AM on weekends. Refer

to figure 6.4.

2. A shift in the user’s routine, while the intervention preferences stay the same. For example,

the user likes an intervention at 10:00AM everyday, but on the weekends the user doesn’t

have to attend school. Refer to figure 6.5.

3. A combination of these two.

The next few cases evaluate the performance of the agent on a routine which has been seen in

the past but not recently. This can be looked as a test of catastrophic forgetting. These changes
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Figure 6.6: Past routine

Figure 6.7: Erratic routine

in the behaviour pattern can also be divided in the above three ways, as well as in terms of time

and activity-based interventions. This can be seen in figure 6.6.

Finally, we also evaluate the performance of the agent on a highly dynamic, erratic behaviour

pattern. This represents a routine with no fixed pattern or commonality between episodes and

the interventions. This can be seen in figure 6.7.

6.3 Multiple Objectives

The user may set multiple simultaneous behaviour change objectives, which might even conflict

with each other. Our next set of test cases evaluates the agent performance in such a situation of

multiple conflicting objectives. As an example, the user may prefer an intervention at 10:00AM

everyday, however on Sundays the user meditates at 10:00AM and prefers not to be disturbed

while meditating. In these cases the agent has to prioritise between the di↵erent objectives.

These cases might also be supported with additional information about the user’s prioritisation

for these di↵erent objectives.

We have two test cases, similar to the example described above. In the first case, the user

sets an intervention for a particular state everyday. However, the user gets annoyed by these

interventions in some of the episodes. The agent must learn to help the user build the habit

while avoiding user annoyance. Refer to figure 6.8.

In the second test case, the user does not get annoyed by specific interventions. Instead, the

user sets a limit on the number of interventions that can be given by the agent. Although giving

an intervention at a particular time everyday would be the correct action to take for the agent,
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Figure 6.8: Avoiding user annoyance. X indicates user annoyance.

Figure 6.9: Limited number of actions. * indicates a time at which the user has limited the
number of interventions.

the user limits the agent’s actions to not be reminded everyday. The agent must learn to give

the interventions which are most e↵ective while not exceeding the limit. Figure 6.9 shows this

test case.

6.4 Interpreting User Guidance

The user can guide the agent in two distinct ways(refer to the input described in chapter 2).

These are-

1. By setting rules at the start of usage.

2. By giving guidance at di↵erent instances while using.

The performance of the agents while receiving these di↵erent forms is evaluated by these test

cases. These test cases require the agent to learn a simple intervention rule. The guidance

given to the agent can be as a rule for all episodes, a rule for some of the episodes, or at the

appropriate time points when the intervention should be received.

These tests are e↵ective if the agent is interpretable. Specifically, if we can determine the agent’s

confidence for a particular intervention, we can observe how it varies as the episodes progress or

as the instance-based guidance is provided.

These test cases can be extended to include di↵erent situations. The interventions can be time

based or activity based interventions. Additionally, the user guidance can be provided as a

combination of rules and instance-based guidance.
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6.5 Sensitivity Over Reward Scale

Our last set of test cases evaluates the agent’s performance with di↵erent scales for the rewards

given. In the actual system the user’s response indicates the degree to which they liked or

disliked a particular intervention. The is a relative scale, which can be assigned absolute values

on di↵erent scales. The di↵erent test cases allow us to compare the agent’s performance with

smaller reward values versus larger reward values. We use the reward scales used in literature,

i.e. reward values of 0.1, 0.3, 1, 3, and 10.



Chapter 7

Results

7.1 Reinforcement Learning

We evaluated the performance of the TensorFlow agents on our test cases described in chapter 6.

We did not evaluate the agent performance on the test cases with multiple objectives since the

environment does not support alternative objectives, like limited number of actions, yet.

7.1.1 Guided Exploration

The neural UCB bandit performs best on the guided exploration test cases. This conclusion is

based on two observations-

1. it performs lesser random exploration, with a lesser number of ine↵ective actions.

2. it converges to the highest returns fast.

The UCB bandit also performs relatively well, converging to high returns with less random

exploration. However, the neural UCB bandit is faster and more e�cient. The Thompson

sampling bandit performs worse as compared to the UCB bandit. It does not converge to

high returns as fast and takes a lot more ine↵ective actions, continuing to explore even after

discovering the ideal actions. The DQN agent’s performance is comparable to the TS bandit.

7.1.2 Personalizing

For the personalizing test cases, none of these agents perform well. This can be attributed to

the less amount of data. Since there is variation in the routine, the agent gets less data about

each pattern.

31
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The Thompson sampling agent performs relatively better than the other agents. However, it

continues to explore other actions even after discovering a good action. This behaviour might be

harmful. The agents with neural networks, i.e. Neural UCB, DQN, and C51 perform comparably

to each other. All of these take too many actions. While this leads to good returns in some

cases, it is not desirable. The UCB bandit performance is between that of the TS bandit and

the neural network models in terms of taking e↵ective actions. It too takes too many actions,

however the loss curve is slightly less random.

7.1.3 Interpreting User Guidance

While we ran di↵erent models on these test cases, they don’t serve their actual purpose as these

agents are not interpretable. We can only evaluate their performance, without evaluating how

the agent actually interprets the guidance.

The neural UCB bandit performs best on these test cases. In these test cases, we primarily

want to use the user guidance to restrict random exploration. The neural UCB bandit shows

the least amount of exploration, while converging to trajectories with good returns. The C51

agent performs almost comparably with training that converges to good trajectories although it

appears to be unstable from the loss curves. The Thompson sampling bandit performs too much

exploration. The UCB bandit also performs ine↵ective exploration, but to a lesser extent. The

DQN performance is similar to the UCB bandit.

7.1.4 Sensitivity Over Reward Scale

The tests over di↵erent scales highlight the fact that exploration is lesser with higher reward

values. The TS bandit particularly has markedly lower exploration with higher rewards. The

performance of the TS bandit and the UCB bandit is comparable with higher rewards. The

neural UCB bandit explores lesser but also overfits to take too many actions. The same is

observed with the C51 agent. The DQN agent does not overfit as much as the C51 agent.

7.2 Sequence Modelling

We evaluated the performance of the di↵erent sequence models on simple data. The simplicity

of the data might be a confounding factor, since we observed that the simpler, smaller models

performed better than the more complex models.
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7.2.1 High Frequency Dataset

The high frequency data is relatively simple data for the model. All the models perform well on

this data. The RNN outperforms the other CNN, LSTM AE, and the SeriesNet marginally. The

Transformer and VQ VAE perform relatively worse.

7.2.2 Di↵erent Frequencies

The data with di↵erent frequencies combined together is also a relatively simple dataset. The

CNN, LSTM AE, and SeriesNet perform well on this data, while the RNN is marginally worse.

Again, the Transformer and the VQ VAE have the lowest performance.

7.2.3 Higher Number of States

This data results in a marked degradation in performance for the RNN and the SeriesNet as

compared to the previous two datasets. The Transformer performance improves slightly, and is

comparable to the RNN. The CNN and LSTM AE continue to perform well, while the VQ VAE

performance remains poor.

7.2.4 Discontinuity as a Patch

Since the discontinuity is added as a repeating patch of meaningless data, this dataset isn’t very

di↵erent from the simple data in terms of patterns in the data. The disadvantage is that the

even if the models perform well, they cannot predict the data which was not observed due to

the discontinuity. The CNN continues to perform the best, followed by the LSTM AE and the

SeriesNet. The VQ VAE performance is slightly better, making it comparable to the RNN and

the Transformer.

7.2.5 Added Noise

With added noise, the CNN performance drops and almost all the models are comparable

with this data. The CNN and LSTM AE are only marginally better than the RNN and the

Transformer. The SeriesNet performance drops to match the VQ VAE.
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7.2.6 Discontinuity as Missing Data

Since the discontinuity is spliced out at regular intervals, this data also isn’t very di↵erent from

the regular or high frequency data. The performance of the di↵erent models is the same as is

seen in the high frequency dataset.

7.2.7 Linear Trend

An important finding was that none of the models performed well on data with trends. This

can be attributed to the training procedure. To mirror an online learning setting we trained

the models on the time series in a sequential manner. This meant that for data with trends, it

would continually encounter previously unseen states which have never been trained on.

Only the CNN and LSTM AE have a reasonable performance, which is still poor. All the other

models have a very poor performance.



Chapter 8

Conclusion

The findings detailed in this thesis highlight that RL agents can be used to augment behaviour

change interventions successfully. Drawing on previous literature, contextual bandits are the best

algorithms to tackle the problem since they don’t overfit to limited amount of data. They learn

reasonably well in limited data settings, thus providing a way to incorporate sample e�ciency.

Human guidance can be used to direct the exploration process by combining it with Bayesian

estimation to learn in an interpretable manner. Bayesian prior-posterior methods provide a

way to estimate the confidence of the actions which make the model interpretable. Lastly, the

bandits can be combined with CNN models to to learn a model of the environment. The work

detailed in this thesis identifies the best methods to solve di↵erent challenges. Future work

includes combining these di↵erent parts to build a complete system which is sample-e�cient and

interpretable.
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Appendix A

RL Environment Input Files

An example of the input files passed to the RL environment are described here. This test

cases represents a simple routine with a time based intervention for the agent to learn. More

specifically, this shows the test case in guided exploration when the user-given intervention di↵ers

from the correct intervention. There is no instance based user guidance in this example.

Figure A.1: The observations file, which shows 7 episodes with identical routines for 6 time
steps. The states are labelled as S1-S5

Figure A.2: The objectives file, which shows that the user has an objective to reach state S6
everyday. Since the start time and end time are missing, the state will be attained right after

the corresponding action(intervention) is received.

Figure A.3: The correct interventions which direct the environment. This file states that the
correct action corresponding to objective 1 is between time points 2 and 3.
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Figure A.4: The user given preferred intervention file, which directs the agents exploration.
The user given intervention does not match the correct one, saying that the intervention should

be given between time points 0 and 1.

Figure A.5: The user rewards file. This indicates that the agent will get a reward of value 1 if
the user is in state S6 at time step 3. The reward for each episode has to be listed separately.
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