
[CSCI 566] Discerning Deep Learning Final Report

Nicholas Klein
nmklein@usc.edu

Advait Rane
aprane@usc.edu

Yang Cheng
ycheng04@usc.edu

Rajat Singh
rajatsin@usc.edu

Abstract

Deep learning models are successful in solv-
ing complex tasks in domains like images,
videos, and graphs. However, the black box na-
ture of such models has prevented their adop-
tion in critical and high-risk use cases. In-
herently interpretable models provide expla-
nations for their outcomes that are faithful
to model computations. The Concept Bot-
tleneck Model (CBM) and the Prototypical
Parts Network (ProtoPNet) are two such mod-
els. We aim to improve the interpretability and
data-efficiency of these models by augment-
ing them with decision trees, auxiliary concept
datasets, and other interpretability techniques.
Our methods result in a comparable classifica-
tion performance with improved interpretabil-
ity and data-efficiency while learning intuitive
and faithful concepts.

1 Introduction

The black-box nature of Deep Learning models
makes their adoption difficult and unsafe in high-
risk scenarios with high cost-of-error or regulation.
Consequently, there has been a surge in research
on Explainable AI(XAI), focusing on explainabil-
ity and algorithm transparency in Deep Learning.
Existing research on explainability can be divided
into post-hoc and ante-hoc methods. Post-hoc inter-
pretability refers to the application of interpretation
methods after model training, for example saliency
maps (Simonyan et al., 2014), LIME (Ribeiro et al.,
2016), and TCAV (Kim et al., 2018). However,
post-hoc methods have been criticized for provid-
ing explanations that do not make sense or are not
faithful to the model computations (Rudin, 2019).

Ante-hoc methods incorporate interpretability
from training stages. Inherently interpretable mod-
els make model computations transparent while
achieving comparable performance. They typically
learn a latent representation that can be reasoned

Figure 1: Concept-based model architecture

about by humans, often in the form of disentangled
concepts as shown in figure 1.

Concept Bottleneck Models (CBMs) (Koh et al.,
2020) modify network architecture to learn con-
cepts as binary labels at an intermediate layer in
a supervised manner. This necessitates concept
annotations for each training image, increasing an-
notation labor and cost. Additionally, CBM has
been criticized because it often doesn’t attend to
the location of the concept in the input image when
predicting it, and in fact may not even correspond
to anything semantically meaningful (Margeloiu
et al., 2021). The Prototypical Parts Network (Pro-
toPNet) (Chen et al., 2019) learns embeddings of
class-specific image patches in an unsupervised
manner by imposing clustering objectives in the
latent space. These embeddings can be projected
back to the input space to visualise the learned
concepts.

We build on these two models to improve in-
terpretability, data-efficiency, and faithfulness to
concepts. We explore three strategies to achieve
these goals-

• To increase model interpretability, we use de-
cision trees which have more interpretative
power than a neural linear layer.

• To improve the CBM’s faithfulness to con-
cepts, we add a layer of concept-specific chan-



nels to the bottleneck instead of using a single
neuron to disentangle each concept.

• We combine auxiliary concept datasets with
clustering objectives to build a model with
better data-efficiency than the CBM and more
control over concepts than the ProtoPNet.

Our methods achieve classification accuracy
comparable to the original papers while offering
improved interpretability and data-efficiency.

2 Related Work

We restrict our literature review to ante-hoc in-
terpretability. We organize these methods by su-
pervised, unsupervised, and hybird learning ap-
proaches.

2.1 Unsupervised Representation Learning

The work by (Li et al., 2018) learns prototypical
images in the latent space for each class. These are
compared with input images at inference time, and
can be viewed through a decoder to yield insights
into the model. (Chen et al., 2019) iterated upon
this work with the Prototypical-Parts-Network (Pro-
toPNet) to learn more realistic prototypes. They
use a pre-trained CNN and clustering objectives
to learn embeddings for patches of training im-
ages to generate ”prototypical parts” for each class.
Self-Explaining-Neural-Nets (SENNs) (Alvarez-
Melis and Jaakkola, 2018) simultaneously predict
relevance scores for each concept to the input im-
age and then aggregate the concepts and relevance
scores to form a prediction. SENNs learn more
general concepts rather than extracting prototypi-
cal features.

2.2 Supervised representation learning

Concept Bottleneck Models (CBMs) (Koh et al.,
2020) add an additional loss on an intermediate
concept-layer learning human-readable concepts.
However, it requires significantly more annotation
for the concept labels of each training image and re-
stricts model interpretation to pre-trained concepts.

Neural backed decision trees (NBDTs)
(Alvin Wan, 2021) replace a neural network’s
final linear layer with a differentiable sequence of
decisions and a surrogate loss. NBDTs learn in-
terpretable high-level concepts-to-label mappings,
but the high-level concepts output by the black-box
neural network remain non-interpretable.

Concept Whitening (Zhi Chen, 2020) performs
whitening normalization and orthogonal transfor-
mation to align a model’s latent space along con-
cepts learned through auxiliary datasets. CW com-
pletely de-correlates outputs of all filters which
might lead to prediction losses when dealing with
highly correlated concepts.

2.3 Hybrid

(Bel’em et al., 2021) address the CBM’s data in-
efficiency by supplementing human annotations
with noisy, generated concept labels and weakly
supervised training methods. They found improved
classification performance with close to no reduc-
tion in interpretability. (Sawada and Nakamura,
2022) address this issue with their CBM+AUC
model by supplementing the CBM’s supervised
concepts with the SENN’s unsupervised concepts.
The CBM+AUC perfoms better than both CBM
and SENN individually and also has an improved
concept accuracy.

3 Problem Statement

Consider a set of inputs x ∈ Rd, targets y ∈ R and
concepts c ∈ Rk. If x is an image, concepts can be
visual properties like shape or color in the image.

We first build on the CBM to improve its inter-
pretability and concept faithfulness. Each input in
the training set is annotated with the concepts and
labels, (xn,yn,cn)n=N

n=1 , where N is the number of
training samples. The model attempts to learn the
mappings g : Rd → Rk, i.e. from input images
to a subset of interpretable concepts, and f : Rk

→ R, i.e. from concepts to the target labels. Tar-
get predictions take the form of f(g(x)). Concept
accuracy is the accuracy with which g(x) predicts
concepts and classification accuracy is the accuracy
of f(g(x)) with the labels. The CBM constructs
an interpretable deep neural network which maxi-
mizes classification accuracy and concept accuracy
by restricting an intermediate layer to predict the
presence of concepts as binary labels.

We experiment with two modifications to the
vanilla CBM. We aim to increase the interpretabil-
ity of f , for which we employ interpretable models
like decision trees rather than neural layers. We
also aim to increase the faithfulness of the concepts
learned by g using concept-specific channels.

We further aim to reduce the amount of anno-
tated data required for the CBM by using small
auxiliary concept datasets. Here a training set



(xn,yn)n=N
n=1 is augmented with k small datasets of

Nk image patch examples for each concept, where
Nk << N . These datasets are used to learn em-
beddings for each concept {zc} by modifying g to
optimise clustering objectives in the latent space.
For an input image xi, g outputs similarity scores
to every concept by comparing xi with the learned
concept embeddings zc. These similarity scores are
passed to f to make class predictions yi.

4 Methods

4.1 CBM with Interpretable Concepts to
Labels Model

Traditional interpretable models can operate on
tabular data, but image data has higher complexity
and dimensionality. The nature of the CBM allows
us to treat the bottleneck concepts as tabular data.
These can be used as input to interpretable models
like decision trees, deep neural decision trees (Yang
et al., 2018) and Neural additive models(Agarwal
et al., 2020).

Decision trees are a commonly used traditional
machine learning technique which have the advan-
tages of interpretation. Deep neural decision tree
is a model which constructs a learnable function
to decide how to split on features. The number of
splits and the threshold of the split can be learnt
with Gradient Descent. It can also split one node
to multiple children which yields more flexibility
than traditional decision trees.

The Neural Additive model (Agarwal et al.,
2020) gives each feature a separate small neural
network and does prediction individually. All pre-
diction results are then added together to get the
final predictions. Since all features are processed
in their own network, we can easily interpret their
influence on different prediction results.

We aim to improve the interpretability of the
CBM by replacing the c-to-y model (f ) with a
vanilla Decision tree, a Deep Neural Decision Tree,
and a Neural Additive model. As in the original
CBM model, there are three training protocols we
can use: independent trains the c-to-y model on the
ground truth concepts (independent from the x-to-c
model g); sequential trains the c-to-y model on the
outputs of the already-trained x-to-c model; and
joint trains the x-to-c and c-to-y models simulta-
neously, end-to-end. Note that because traditional
decision trees are not differentiable, they cannot be
evaluated with the joint training protocol.

Figure 2: Prototype Bottleneck Model architecture

4.2 Concept-Channels Bottleneck Model

To improve the faithfulness of concepts learned by
the CBM, our model needs to focus on concept
related areas (Margeloiu et al., 2021). We hypothe-
size that the CBM failed to achieve this because the
fully connected layer for concept prediction looks
at the correlation of all pixels in the picture. We
additionally hypothesize that the parameters of the
weights and bias corresponding to one node are not
enough to encode information of a complete con-
cept. Inspired by the structure of class activation
mapping (Zhou et al., 2015), we proposed adding
a new Concept-Channel layer to the CBM.

The concept layer in the CBM is a fully con-
nected layer with number of nodes restricted to be
the number of concepts. In our Concept-Channel
layer, we construct a convolution layer to generate
the same number of channels as the number of con-
cepts. Each output channel is average-pooled to
give one value for the score of a concept. The con-
volution layer retains spatial information, forcing
the concept layer to learn more spatial patterns. At
the same time, more parameters are learned in the
convolution filters which may increase the informa-
tion capacity of each concept node.

Since the only difference between the CBM and
the CCBM is the x-to-c model, we only train the
model to predict concepts from the input images.
Then, as in (Margeloiu et al., 2021), we use saliency
maps to find which part of the image the model is
attending to. We also use Activation Maximization
to maximize the concept filter to visualize what the
filter is looking at.

4.3 Prototype Bottleneck Model

We modified the ProtoPNet (Chen et al., 2019)
to learn concepts in a supervised manner like the
CBM but with lesser annotated data. The ProtoP-
Net learns embeddings as model parameters which
are optimised to minimize the clustering objectives.



We use smaller auxiliary concept datasets with im-
age patches of concepts to provide supervision for
concept learning. Figure 2 illustrates the pipeline
of our model. We obtain concept embeddings by
encoding the concept patches with the same en-
coder as the image encoder. We then optimise the
clustering and separation losses described in (Chen
et al., 2019) with these concept embeddings.

The learned embeddings are used to calculate
similarity scores with input image embeddings
obtained from the image encoder to determine
whether a concept is present or absent. To train
the model when calculating similarity, we assume
that a class-to-concept mapping is given, i.e., we
know which concepts are generally associated with
a class but we don’t have annotations for concepts
in each image of that class. This assumption is
similar to the assumption made in CBM data pre-
processing when de-noising the training data. Fur-
thermore, the ProtoPNet also assumes that each
learned concept is associated with a specific class
which makes our assumption permissible in the
ProtoPNet architecture.

Thus, we use distances in the embedding space
between image embeddings and concept patch em-
beddings to calculate similarity scores for each
concept. These similarity scores are passed to a
single dense layer to make class predictions, just
like the CBM. Since the bottleneck in this model
is characterised by similarity to prototypes, we call
this model the Prototype Bottleneck Model (PBM).

5 Experiments

5.1 Dataset

We perform bird classification on the Caltech-
UCSD Birds-200-2011 (Wah et al., 2011) dataset
which comprises 11,788 bird images. The dataset
has labels for 200 birds categories and 312 labelled
attributes for each bird. These attributes are treated
as concepts. The attributes describe different bird
parts, for example the beak shape or the wing color.

For experiments with the CBM with inter-
pretable c to y model and the Concept-Channels
Bottleneck Model, we follow the data preprocess-
ing steps described by (Koh et al., 2020) which
include augmentation of input images as well as
de-noising and filtering of the labeled concepts.
Concepts are denoised by majority voting so that
all instances of a class are labeled with the same
concepts, and concepts that apply to <10 classes
are filtered out, leaving us with 112 concepts. We

use the same train, validation, and test sets as (Koh
et al., 2020) which include 4,796, 1,198, and 5,794
bird images respectively.

For the PBM, we use the train and test sets cre-
ated for the ProtoPNet experiments (Chen et al.,
2019). These sets each contain approximately 30
images for each bird class. The train set is fur-
ther augmented with translation, rotation and shear
image augmentations to get 30 images for each
original image. We use 112 sets of image patches,
each containing about 10-20 examples of concepts.
The patches were resized to one-fourth the size of
train images. We leverage the pre-processed con-
cept annotations used in the CBM experiments to
create these. For each concept, we sample one im-
age from every class which exhibits that concept.
We then pick 10-20 of the sampled images which
have the concept clearly present and crop them to
fit around the concept.

Notably, the per-image concept annotations are
only used to aid us in creating these concept patches
and are not utilized directly in this experiment. This
concept annotation process was completed by two
non-expert team members in about 1 week, which
we believe is a significant reduction in annotation
labor as compared to that required for annotating
concepts in the CUB dataset.

5.2 Metrics
We evaluate our methods based on their class ac-
curacy. Accuracy of the predicted concepts will
also be used to evaluate the CCBM as this method
directly modifies how the concepts are predicted.
For CCBM we also used saliency maps (Morch
et al., 1995) and activation maximization (Erhan
et al., 2009) to visualize the results.

5.3 Baselines
We compare our methods against three baselines:
(1, 2) the standard Concept Bottleneck Model with
independent and sequential training protocols, and
(3) the Prototypical Parts Network trained with
automatically generated concept patches.

5.4 Implementation Details
CBM baseline We implement the independent and
sequential training protocols. We use the tuned hy-
perparameter settings from the CBM paper: batch
size of 64; SGD with momentum of .9 for the opti-
mizer, using a weight decay of 5e-5 for independent
and 4e-5 for sequential; cross-entropy loss; learn-
ing rates of .01 for the x-to-c model and .001 for



the c-to-y model; and a sigmoid activation of the
concept logits before being fed to the c-to-y model
when performing inference with the independent
model.

ProtoPNet baseline We train the ProtoPNet
with an augmented dataset which uses 10 times
the number of images. We use 10 prototypes per
output so that each class has a high probability of
having a prototype associated with it. We tuned
the hyperparameters to have a clustering coefficient
of 0.8, separation coefficient of -.08, and training
batch size of 124. Prototypes are projectected every
20 epochs along with a convex optimization of the
last layer.

CBM with Decision Tree The c-to-y neural
model is replaced with a vanilla decision tree that
uses Gini Impurity as the criterion for splitting and
is not depth-limited. We found that the learned de-
cision tree splits are more intepretable if the inputs
it is trained on are binarized. Therefore, the output
logits of the x-to-c model are passed through a sig-
moid and binarized before being given as input to
the decision tree during training of the sequential
model and inference of both the independent and
sequential models. We use the same settings as the
CBM baseline for all other hyperparameters.

CBM with Differentiable interpretable Mod-
els The DNDT is trained with ground truth con-
cepts as input. We assume that the tree is split
5 times into at most 3 parts. Thus, there are at
most 249 leaves, which can handle the 200 differ-
ent classes. The model is trained for 1000 epochs
with the Adam optimizer with learning rate 0.01
and a cross entropy loss. The training parameters
are the cutting points of each node. The class la-
bel is converted to one-hot encoder to fit the tree
prediction structure.

For the Neural Additive model, each feature net
has three hidden layers (64, 64, 32 units) with
ReLU activation. The prediction results of the dif-
ferent feature networks were summed together to
generate the final predictions.

Concept-Channel Bottleneck Model The
Concept-Channel Bottleneck Model uses the same
training settings as the CBM baseline. For the con-
cept filters included before the concept layer, we
use a kernel size of 3 and average pooling to gener-
ate concept scores. The activation maximization is
achieved by using flashtorch package in python.

Prototype Bottleneck Model We implement
the PBM with reference to the ProtoPNet imple-

Cross-entropy loss coefficient 1
Clustering loss cefficient 0.0008

Separation loss coefficient -0.008
L1 regularisation λ for last layer 0.0001

Last layer is trained every x epochs 2
Last layer is trained for x epochs 4

Table 1: PBM hyperparameters that give us the best
performance

mentation1. We use a VGG-19 base with two addi-
tional convolutional layers and a sigmoid activation.
This encodes images to a 128-channel output and
the patches to 128-dimensional vectors. The proto-
type embeddings are re-calculated every iteration
while training. A logarithmic function given by -

f(x) = log(
x+ 1

x
) (1)

converts distances to similarity. The similarity
scores for all prototypes are passed to the final
layer, which is a linear layer with no bias term.

The CUB dataset provides a class-to-label map-
ping stating the percentage of images of each class
positive for a concept. We binarize this by con-
sidering a value greater than 50% as 1 and others
as 0. This assumption is similar to the preprocess-
ing done in (Koh et al., 2020). This mapping is
used as the prototype-to-class mapping required
for training our model.

We experiment with different hyperparameters
to improve performance. The hyperparameters in-
clude the coefficients for the different loss terms
and the frequency of updating the last layer weights.
The hyperparameters that give us the best perfor-
mance are given in table 1. We trained the model
on the USC CARC facility with NVIDIA Tesla
V100 GPUs. One epoch (where all layers were
trained) took approximately 80-90 minutes. Our
source code can be found on GitHub2.

6 Results

6.1 CBM with Interpretable Concepts to
Labels Model

Performance As can be see in table 2, the class ac-
curacy of the CBM + Decision Tree model is lower
than that of the standard CBM for both the indepen-
dent and sequential training strategies. This said,

1https://github.com/cfchen-duke/
ProtoPNet

2https://github.com/advaitrane/
AuxProtoPNet

https://github.com/cfchen-duke/ProtoPNet
https://github.com/cfchen-duke/ProtoPNet
https://github.com/advaitrane/AuxProtoPNet
https://github.com/advaitrane/AuxProtoPNet


Model Class Accuracy
CBM (Independent) 72.3%
CBM (Sequential) 76.0%

ProtoPNet 71.8%
CBM + DT (Independent) 65.7%
CBM + DT (Sequential) 69.0%

PBM 69.9%

Table 2: Model classification accuracy results

Model Concept Accuracy
CBM 97.1%

CCBM 96.7%

Table 3: Concept accuracy of the Concept-Channels
Bottleneck model

both of these models have performance comparable
with our baselines, and the CBM + DT (Sequential)
model reaches 69.0% which is competitive with the
CBM (Independent) and ProtoPNet baselines. We
did not include results for the DNDT and Neural
Additive Model in this report since the accuracy is
extremely low and training does not converge.

Interpretability The main benefit of the CBM
+ DT model is its interpretability. Like the original
CBM, this model provides predicted concepts that
are relevant to the class prediction, allowing for bet-
ter understanding of the model’s decision. A new
benefit of the CBM + DT model over the original
CBM comes from the ability to easily inspect the
learned c-to-y model via traversal of the decision
tree. By doing so, we enable users of this model
to directly inquire about why the predicted class
was chosen over another for some image. For ex-
ample, figure 3 shows an image of a Black-footed
Albatross that the CBM + DT (Sequential) model
incorrectly predicts as a Northern Fulmar. If a bird
watcher was using this model and wondered why
we did not predict “Black-footed Albatross” for
this bird, a traversal of the learned decision tree
could automatically explain that it is because we
noticed white by its head and upper body, which is
uncommon for the Black-footed Albatross, and we
didn’t notice grey on its underside, which makes
sense since the underside is not visible in this im-
age. Inquiring about this same explanation with
the original CBM would require repeatedly guess-
ing different combinations of concepts to see what
causes the target class to be predicted, and it would
be even more challenging to find the simplest way
of modifying the concepts that would result in this

Figure 3: Image of a Black-footed Albatross that the
CBM+DT model predicts as a Northern Fulmar. The
decision tree explains that Black-fotted Albatross was
not predicted because of the white crown and upper-
parts concepts being present, and the grey underparts
concept not being present.

Figure 4: line graph for converge speed, y-axis repre-
sents validation accuracy and x-axis represent epochs.

change.

6.2 Concept-Channels Bottleneck Model

Performance As can be seen in table 3, the
Concept-Channels Bottleneck Model achieves sim-
ilar concept accuracy as the original CBM baseline.
Notably, the hyperparameters for the CCBM model
were not tuned, but instead set to the same settings
as the tuned CBM model. With proper tuning, we
may achieve better results. An interesting finding
that can be seen in figure 4 is that the convergence
speed has slightly improved in CCBM model.

Faithfulness The major achievement of the
CCBM is its improved faithfulness to the concepts
that can be observed by visualizing the attended



Figure 5: Saliency maps for different leg-color con-
cepts in the original CBM. Taken from (Margeloiu
et al., 2021)

.

Figure 6: Saliency maps for different leg-color con-
cepts in CCBM

areas in the input image. The CBM fails to attend
to the correct areas of the input images when pre-
dicting concepts.

One possible reason is the fully connected layer
learns relationships of all pixels in the image and
captures some hidden correlations such as leg color
and feather color, which cause the model to attend
to all area of birds instead of only legs. Another
possibility is that every concept has only one ded-
icated node which doesn’t have enough capacity
to disentangle a concept. As can be seen in figure
5 from (Margeloiu et al., 2021) in appendix, the
CBM does not attend to the region of the image that
includes the legs when predicting leg color related
concepts. Comparing this with saliency maps for
the same concepts in the CCBM, seen in figure 6,
the CCBM focuses on lower body regions instead
which contains the legs. We also have the visual-
ization of activation maximization in appendix.

6.3 Prototype Bottleneck Model
Performance The PBM gives a competitive classi-
fication accuracy when compared with our baseline
experiments. Table 2 shows that PBM has a class
accuracy of 69.9%, ProtoPNet with the same model
architecture has 71.8%, and the CBM has 76.0%.
The PBM may even surpass the ProtoPNet with
further hyperparameter optimization. Although the
performance is lower than the CBM, it must be
noted that the CBM has as many annotations per
concept as the number of images in the full dataset
whereas we have only 10-20 sample patches per
concept. Thus, we achieve a comparable perfor-

Figure 7: TSNE plot of the 112 concept prototype em-
beddings learned by the PBM

Figure 8: Legend for the TSNE plot

mance with much less annotated data.
Learned Prototype Embeddings Figure 7

shows a TSNE plot of the 112 prototype embed-
dings learned by the PBM. This plot indicates that
the latent space learned by the PBM is meaning-
ful in terms of identifying different concepts and
encoding their similarities and co-occurrence. For
example, all the yellow points represent concepts
relating to the color yellow (e.g. wing color yellow,
belly color yellow). These points are all clustered
together near the bottom left. The brown and buff
points, which represent similar colors, are also clus-
tered in the right of the image. A similar observa-
tion can be made for other colors. When the color is
not the most significant factor in a concept, the em-
beddings for the same part are clustered together.
This can be seen in the green rightward triangle
points which represent different bill shapes. Figure



Figure 9: The bird in the input image gets highest sim-
ilarity scores for the concepts grey breast, blue crown,
blue forehead, and white belly.

8 provides a detailed legend for the plot.
Transparent and Faithful Concept Learning

The concepts learned by the PBM are grounded
in expert-chosen concepts meaningful to the task.
This is an advantage over the ProtoPNet whose un-
supervised mechanism can be confused by adver-
sarial or compression noise (Hoffmann et al., 2021).
The prototype similarity mechanism provides an
intuitive way to visualise input image parts with
respect to concept patches rather than binary labels
given by the CBM. Visualising the input image and
concept patches helps explain the similarity scores
and interpret model decisions. A sample visualisa-
tion is shown in figure 9, which makes it obvious
why the input image correctly gets a high similarity
score for the corresponding concepts.

7 Discussion

Our results indicate that there are several avenues
to make improvements to the current state of inher-
ently interpretable models. We explore three such
strategies and achieve encouraging results.

One avenue for improvement is increasing the
interpretability of the concept-to-label model. Our
results with the Decision Tree do provide better in-
terpretability. However, it is not differentiable and
cannot be trained end-to-end. We could not achieve
good results with differentiable models due to the
limitation of model structure. The DNDT does
not perform well with a large number of features
as it uses Kronecker product to exhaustively find
all final nodes and prediction results. The Neural
Additive Model can be used with a large number
of features but can not deal with large number of
classes. The summation structure used can only
do binary classification. To our knowledge, there
is no differentiable tree model that can perform
as well as a decision tree when predicting among
more than 100 classes. Further work in this area

should aim to improve the performance of differ-
entiable interpretable models to classify among a
large number of classes.

We do not attempt to increase the interpretabil-
ity of the input-to-concept model. Since this part
is typically a large pretrained model, increasing
the interpretability in this part is also important.
The bottleneck only provides interpretability at one
layer, whereas the ultimate goal for these models
should be to make the entire model interpretable.

Our results with the CCBM highlight that a sin-
gle neuron may be insufficient to encode a concept.
More complex, composite, class-specific architec-
tures can lead to better faithfulness to concepts.
The critique about the CBM’s attended area of has
been mitigated by our CCBM as we observed from
saliency maps. The activation maximization results
are not human identifiable, which may be caused by
the complexity of birds in CUB dataset. We may
get better results with other methods, like Grad-
CAM. More experiments can be done to prove the
efficiency of the model. Thus, designing alternate
architectures which encode useful inductive biases
for this task is a fruitful area of research to improve
model performance.

Lastly, the PBM results indicate that CBMs
are highly data-inefficient and comparable perfor-
mance can be achieved with much fewer labeled
samples. Combining few-shot learning techniques
with inherently interpretable models could further
improve data-efficiency. Our method also makes
it simple to collate auxiliary patch datasets. This
model may be applicable to a host of tasks which
require interpretable models with expert supervi-
sion in critical use cases. For example, the PBM
can be used to detect ailments in medical imaging
data where experts could provide small auxiliary
datasets of the relevant concepts like tumors or
inflammation.

8 Conclusion

Our results indicate that our strategies are success-
ful in improving the interpretability, data-efficiency,
and concept faithfulness of the CBM. We combine
ideas from different interpretable models like the
CBM, the ProtoPNet, and Decision Trees. The
PBM has significant benefits over both the Pro-
toPNet and the CBM. Our project thus effectively
contributes to research on inherently interpretable
neural models.



References

Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang,
Rich Caruana, and Geoffrey E. Hinton. 2020. Neu-
ral additive models: Interpretable machine learning
with neural nets. CoRR, abs/2004.13912.

David Alvarez-Melis and T. Jaakkola. 2018. Towards
robust interpretability with self-explaining neural
networks. In NeurIPS.

Daniel Ho Jihan Yin1 Scott Lee1 Suzanne Petryk
Sarah Adel Bargal Joseph E. Gonzalez Alvin Wan,
Lisa Dunlap. 2021. Nbdt: Neural-backed decision
tree. In ICLR.

Catarina Bel’em, Vladimir Balayan, Pedro Saleiro, and
P. Bizarro. 2021. Weakly supervised multi-task
learning for concept-based explainability. ArXiv,
abs/2104.12459.

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su,
and Cynthia Rudin. 2019. This looks like that:
deep learning for interpretable image recognition. In
NeurIPS.

D. Erhan, Yoshua Bengio, Aaron C. Courville, and Pas-
cal Vincent. 2009. Visualizing higher-layer features
of a deep network.

Adrian Hoffmann, Claudio Fanconi, Rahul Rade, and
Jonas Kohler. 2021. This looks like that... does
it? shortcomings of latent space prototype in-
terpretability in deep networks. arXiv preprint
arXiv:2105.02968.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J.
Cai, James Wexler, Fernanda B. Viégas, and Rory
Sayres. 2018. Interpretability beyond feature attri-
bution: Quantitative testing with concept activation
vectors (tcav). In ICML.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang,
Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. 2020. Concept bottleneck models.
In International Conference on Machine Learning,
pages 5338–5348. PMLR.

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin.
2018. Deep learning for case-based reasoning
through prototypes: A neural network that explains
its predictions. In AAAI.

Andrei Margeloiu, Matthew Ashman, Umang Bhatt,
Yanzhi Chen, Mateja Jamnik, and Adrian Weller.
2021. Do concept bottleneck models learn as in-
tended? arXiv preprint arXiv:2105.04289.

N.J.S. Morch, U. Kjems, L.K. Hansen, C. Svarer,
Ian Law, Benny Lautrup, Stephen Strother, and
K. Rehm. 1995. Visualization of neural networks
using saliency maps. pages 2085 – 2090 vol.4.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ” why should i trust you?” explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215.

Yoshihide Sawada and Keigo Nakamura. 2022. Con-
cept bottleneck model with additional unsupervised
concepts. ArXiv, abs/2202.01459.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. 2011. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology.

Yongxin Yang, Irene Garcia Morillo, and Timothy M.
Hospedales. 2018. Deep neural decision trees.
CoRR, abs/1806.06988.

Cynthia Rudin Zhi Chen, Yijie Bei. 2020. Concept
whitening for interpretable image recognition. In
Nature.

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude
Oliva, and Antonio Torralba. 2015. Learning deep
features for discriminative localization. CoRR,
abs/1512.04150.

http://arxiv.org/abs/2004.13912
http://arxiv.org/abs/2004.13912
http://arxiv.org/abs/2004.13912
https://doi.org/10.1109/ICNN.1995.488997
https://doi.org/10.1109/ICNN.1995.488997
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1806.06988
http://arxiv.org/abs/1512.04150
http://arxiv.org/abs/1512.04150


Figure 10: Left is the visualization of upper body color,
right is the visualization of beak. We can tell that color
block of larger body part is more concentrated. This
may because the camera prefer to put main body in the
middle of the camera

A Appendices

A.1 Visualization results for CCBM


