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1 Problem Definition
Machine learning algorithms increasingly play a

bigger role in society’s decision-making processes, for
example, hireability assessment, personality assess-
ment, recidivism prediction. The harm that a biased
machine learning algorithm can cause, thus, becomes
more widespread and dangerous. A well-known case
of bias involves the Correctional Offender Manage-
ment Profiling for Alternative Sanctions (COMPAS)
software that was used by courts to measure recidi-
vism. A research found the software to be biased
against African-Americans (Mattu (n.d.)). Hence, bias
and fairness in machine learning is an important re-
search direction going forward.

This project aims to study and quantify the biases
learned by emotion recognition models on the multi-
modal cross-cultural SEWA dataset, and contribute a
way to reduce biases in the models. We analyse the
data to identify sources of bias the model may learn.
We quantify bias and unfairness in the predictions
of baseline deep learning emotion recognition mod-
els trained on different modalities. We further analyse
the effects of late fusion on prediction bias and eval-
uate debiasing strategies at the late fusion step. Our
work thus performs a holistic analysis of bias in the
entire pipeline including data, model, and result fu-
sion. The pipeline is illustrated in Figure 1.

Figure 1: We analyse biases in the data, across modali-
ties, and after late fusion.

2 Literature Review
2.1 Source of Biases in Machine Learning

The current literature identified three main sources
of unfairness: biases introduced from the data to the
algorithm (representation bias, sampling bias, etc.),
biases introduced from the algorithm to the user (al-
gorithmic bias, user interaction bias, etc.) and biases
introduced by the user back into the data (histori-
cal bias, self-selection bias, etc.) (Mehrabi, Morstat-
ter, Saxena, Lerman, and Galstyan (2022)). The three

sources of biases constituted a feedback cycle. The bi-
ases from the data leads to biases in the model’s out-
puts, which then leads to biases in the interaction be-
tween the user and the system, which finally gener-
ates new data that contains biases.

For our project, we are focusing on two types of bi-
ases: the biases inherent in the data and the biases
arising after the machine learning model is trained on
the data.

2.2 Abstract Fairness Definition and Fair-
ness Metrics

Fairness has many definitions, some of which
are adapted by ML research in different contexts
(Hutchinson and Mitchell (2019)). There are several
metrics defined to quantify fairness (Caton and Haas
(2020), Mehrabi et al. (2022)). At present, there is no
universal means to measure fairness and no guide-
lines on which measure is the "best". Authors in (Baro-
cas, Hardt, and Narayanan (2019)) defined 3 abstract
criteria for fairness. Consider S as the sensitive vari-
able (group or cultural identifier), Y as the target vari-
able, and R is the classification score produced by the
classifier, the three abstract criteria of fairness are as
follows:

• Independence: this criterion aims to make clas-
sifiers scores independently of the group mem-
bership:

R ⊥ S (1)

This criterion does not take into account the cor-
relation between the group and the predicted
variable. From another perspective, this can be
considered unfair for some groups even though
the criterion itself is satisfied. An example of a
fairness metric that focus on this criterion is Sta-
tistical Parity (Caton and Haas (2020)).

• Separation: this criterion is an extension of the
Independence criterion to address the unfair-
ness concern above:

R ⊥ S | Y (2)

This criterion looks at the independence of the
score and the sensitive variable conditional on
the value of the target variable Y . An example
of a fairness metric that targets this criterion is
Equal Opportunity (Caton and Haas (2020)).

• Sufficency: this criterion looks at the indepen-
dence of the target Y and the sensitive variable
S conditional for a given score R:

Y ⊥ S | R (3)



This criterion is related to calibration-based met-
rics (Barocas et al. (2019)).

In recent surveys, fairness metrics are typically di-
vided into group based metrics and individual met-
rics. Group based metrics (Hutchinson and Mitchell
(2019)) enforce fair outcomes across groups and are
aligned with our work. We explore two types of these
group-based metrics for our project:

• Parity-based: These metrics consider the pre-
dicted positive rates across groups (Dwork,
Hardt, Pitassi, Reingold, and Zemel (2011),
Caton and Haas (2020)). For example, statistical
parity defines fairness as the equal probability of
predicting the positive label across all groups:

Pr (ŷ = 1 | gi) = Pr (ŷ = 1 | gj) (4)

This metric targets the Independence fairness
criterion. However, it does not consider inher-
ent differences between groups.

• Confusion-matrix based: These metrics con-
sider the true label. They compare aspects like
True Positive Rate (Hardt, Price, Price, and Sre-
bro (2016)) or Overall Accuracy (Berk, Heidari,
Jabbari, Kearns, and Roth (2021)) across differ-
ent groups. Hence, differences between groups
are taken into account unlike parity-based met-
rics. An example is the Equal Opportunity met-
ric:

Pr (ŷ = 1 | y = 1&gi) = Pr (ŷ = 1 | y = 1&gj)
(5)

Under this metric, an algorithm is considered
fair if the True Positive Rate is the same for both
groups. This enforces Separation.

Furthermore, fairness is usually defined in classifi-
cation but our problem is regression. Fair regression
has been explored with convex (Berk et al. (2017)) and
non-convex (Komiyama, Takeda, Honda, and Shimao
(2018)) optimisation by adding certain regularization
terms that incentivize fair outcomes.

2.3 Bias and Fairness in Affective Com-
puting

Bias and fairness has been studied in ML applica-
tions for Affective Computing. (Li and Deng (2020))
explores dataset bias in facial expression recognition,
and (Sagha, Deng, and Schuller (2017)) explores the
effects of personal traits on speech valence recog-
nition. (Yan, Huang, and Soleymani (2020)) iden-
tify biases in multi-modal personality assessment and
explore de-biasing strategies. (Raghavan, Barocas,
Kleinberg, and Levy (2020)) studies biases and de-
biasing strategies in algorithmic hiring based on ac-
tual vendor practices. Bias in multi-modal machine

learning for assessing hireability from automated
video interviews is detailed in Booth et al. (2021). We
build on this literature by evaluating bias and fairness
in emotion recognition across cultures.

2.4 De-biasing Strategies
There has been extensive research on addressing bi-

ases in machine learning. There are three categories of
de-biasing methods (Mehrabi et al. (2022)):

• Pre-processing: Pre-processing the data to re-
move biases before training.

• In-processing: These methods reduce bias by
modifying the model itself, like adding a regu-
larizer to incentivize fairness (Berk et al. (2017)).

• Post-processing: Post-processing method try to
reassign the labels given by the model.

In this project, we will explore a pre-processing
method for de-biasing by dropping the feature sets
that is most predictive of culture.

3 Dataset
SEWA is a database of annotated audio and 2D Vi-

sual dynamic behavior (Kossaifi et al. (2021)). It con-
tains over 2000 minutes of audio-visual data of 398
participants belonging to six different cultural back-
grounds, British, German, Hungarian, Greek, Serbian
and Chinese. We restrict ourselves to the German and
Hungarian cultures.

To collect the data, participants’ standard webcams
and microphones were used. Participants have been
divided into pairs based on cultural background, age
and gender. There were two experiments conducted
to collect the data. Experiment Setup Part 1: Watch-
ing Adverts. Each person watched the same four ad-
vert videos each in 60 seconds length. The advert is
chosen to elicit amusement, empathy, liking and bore-
dom. After watching the advert, the person is asked
to report his/her emotional state and sentiment.

Experiment Setup Part 2: While discussing Adverts
in video Chat. After watching the 4th video, the vol-
unteer pair had a 3 minute discussion with each other
to elicit reactions and emotions about the advert and
the advertised product. After the discussion each vol-
unteer is asked to fill a questionnaire self-reporting
his/her emotional state and sentiment towards the
discussion.

The SEWA dataset has 198 recording sessions, with
a total of 398 participants with a male/female ratio of
1.020. The participants are divided into 5 age groups,
where participants aged 18-29 form the majority. The
data has been annotated differently for each type of
feature. Some have been labeled through manual
annotation while others have been annotated semi-
autonomously.



4 Methods
4.1 Feature Extraction

We followed the AVEC 2019 CES guidelines to ex-
tract features from the raw audio and video data in
the SEWA database. We extract three types of features
organised as follows:

• Low Level Descriptors: for visual LLDs, the in-
tensities of 17 FAUs are extracted for each video
frame using OpenFace (Baltrusaitis (2022)). Ad-
ditionally a confidence measure, and descrip-
tors for pose and gaze are extracted. For audio
LLDs, OpenSMILE (audeering/opensmile (2022))
is used to extract two feature sets. These are the
extended Geneva Minimalistic Acoustic Param-
eter Set (eGeMAPS) features and MFCCs 1-13
(and their first- and second-order derivatives).
The LLD features are further processed by cal-
culating statistics over a sliding window.

• Bag-of-Words: OpenXBOW (openXBOW
(2022)) is used to extract Bag-of-Word features
from the LLD features. This provides us with
three more modes of data.

• Deep Representations: The ResNet-50 (He,
Zhang, Ren, and Sun (2015)) pretrained on
the Affwild dataset (Zafeiriou et al. (2017)) is
used to extract a 2048-dimensional visual fea-
ture vector for each frame. To extract audio fea-
tures, DeepSpectrum (Amiriparian and Gerczuk
(2022)) is used for two pretrained CNN models,
the DenseNet (Huang, Liu, van der Maaten, and
Weinberger (2018)) and the VGG16 (Simonyan
and Zisserman (2015)). These models output a
1024- and a 4096-dimensional feature vector re-
spectively.

4.2 Model
To evaluate bias and unfairness in model predic-

tions, we use the baseline predictions provided in the
AVEC 2019 CES. There are 10 baseline outputs - one
for each extracted feature set and one that combines
all modalities using late fusion with Support Vector
Regression.

The predictions are made using a two layer LSTM-
RNN model. For each emotion dimension (i.e.,
arousal, valence, liking) a dense layer outputting a
value for each timestep is stacked on this base. Thus,
the LSTM model solves a regression task over the
three dimensions.

4.3 Fairness Metrics
We evaluate fairness in the baseline results using the

following 4 metrics for group fairness:

• Difference in Mean: this metric measures the
difference between the mean of the target vari-
able of different groups. The lower the value the
more fair the predictions are. This metric reflects
the Independence criterion.

• Difference in Concordance Correlation Coeffi-
cient: this metric measures the difference in the
CCCs between different groups. The lower the
value the more fair the results are. This metric
reflect the Separation criterion.

• Difference in Mean Absolute Error: The Mean
Absolute Error of each group can also be com-
pared similarly to the difference in CCC met-
ric. This metric also reflects the Separation Cri-
terion.

• Jensen-Shannon Divergence: The Jensen-
Shannon divergence compares the difference in
the distribution of the target variable between
the two groups. This metric has more informa-
tion than just comparing the mean and reflect
the Independence criterion.

These metrics are calculated on the development set
of the CES which has both the true values and the pre-
dicted values of the baseline LSTM.

4.4 Statistical Test Analysis
Student’s T-test is also used in order to find differ-

ences in the feature means across different groups,
which can indicate biases. We applied the T-test on
the SEWA database training set. The motivation is to
identify using p-value the data labels that can intro-
duce bias in model training. From the SEWA database
we have performed an analysis on the arousal, val-
uene and liking labels for the German and Hungarian
Train dataset. Additionally, we do the same analysis
for the extracted audiovisual LLD features.

4.5 Culture Predictivity of Modalities
We evaluate the culture predictivity of each feature

set to quantify the model’s ability to learn informa-
tion about culture from the features. This approach is
similar to the use of a random forest model to predict
gender from the features in Booth et al. (2021). We use
the same model described in section 4.2 to evaluate
the biases it can learn. A dense layer is stacked on the
2 LSTM layers to predict between two culture classes.

To increase the amount of labelled data, we split the
features recorded for an entire session into windows
of 20 timesteps. Each of these windows has the label
of that subject’s culture. Thus, we predict a subject’s
culture from 20 timestep windows of a feature set.

Ideally, the model should not learn any biases about
the cultures from the feature sets. Thus, the predictive
accuracy of the model should be 50% ,i.e., the same



as random prediction. A predictive accuracy greater
than 50% indicates that the model learns information
about culture from the feature set.

4.6 Late Fusion Debiasing
Late Fusion combines the predictions of different

modalities into a multimodal prediction using Sup-
port Vector Regression. We explore a debiasing tech-
nique at the late fusion step based on culture predic-
tivity. We drop those feature sets that have a high cul-
ture predictivity and encode culture information.

We hypothesise that dropping highly predictive fea-
tures will result in more fair predictions which will
not be biased by the features that encode culture in-
formation. Thus the final multimodal predictions will
be independent of the subject’s culture. More specif-
ically Late Fusion Debiasing by dropping highly cul-
ture predictive feature sets will give a better perfor-
mance on the independence fairness metrics.

5 Results
5.1 Fairness Metrics

First, we evaluated the fairness in our development
set using the four metrics detailed in Section 4.3. The
results are summarized in Figure 2. Each graph in the
figure is the results for a different metric. There are
three bars group for three different emotions in ev-
ery graph. And every bar represent a different feature
sets.

As we can see from the Figure 2, the results are in-
consistent. For example, for the MFCC feature set,
when predicting Arousal, the MAE Difference is low
while the CCC difference is high. This pattern can
be seen elsewhere such as when predicting Arousal
using DeepSpectrum features. For Mean Difference
and JS Divergence graphs, the pattern also appears
for eGeMAPS BOW feature set for Arousal prediction
and others.

There are some possible reasons for this inconsis-
tency. First, this could be due to the inherent limita-
tion of these metrics; as in, they don’t accurately cap-
ture fairness or biases in the data. Secondly, this could
also mean that considering feature sets separately is
not useful in detecting biases, as biases can emerged
more clearly when combining different modalities to-
gether. A novel multi-modal fairness metric may be
needed to capture such information.

5.2 Statistical Test Analysis
For the Valence, Liking and Arousal labels sepa-

rated by culture, we found Valence label bias to be
statistically insignificant with a p-value of 0.79, where
as Liking and Arousal label bias were statistically sig-
nificant with a p-vale < 0.05. The histograms in figure
3 show the labels averaged per subject for better visu-
alization. These plots show that the label values for
German subjects have a lower magnitude on average.

(a) Arousal (b) Liking

(c) Valence

Figure 3: Histograms of German and Hungarian labels.
Arousal, Liking - significant; Valence - insignificant.

For the statistical analysis of extracted features from
eGeMAPS, MFCC, and visual FAU activations we
have identified multiple labels which are statistically
significant.

Figure 4: Statistically significant extracted labels from
Visual and Audio Data

(a) Loudness - eGeMAPS (b) MFCC

(c) AU20 - Visual Feature

Figure 5: Histograms of German and Hungarian fea-
tures. Loundess is in eGeMAPS, MFCC and AU20 in
visual features are some of the significant labels



(a) MAE Difference (b) CCC Difference

(c) Mean Difference (d) Jensen-Shannon Divergence

Figure 2: Fairness metrics on different features set and across different emotions.

5.3 Cultural Predictivity of Modalities
We evaluate the classification accuracy of the LSTM

culture prediction model for each modality. The accu-
racy across modalities are shown in figure 6.

Figure 6: Classification accuracy of the LSTM culture
prediction model on different feature sets.

Based on the accuracy values, we can split the
modalities into three sets as follows-

• Feature Set 1: These feature sets are not predic-
tive of culture. The accuracy value is 50-55% in-
dicating that the model does not learn to classify
culture from these features. This set includes
the visual LLD features and the audio eGeMAPs

BoW features.

• Feature Set 2: These feature sets are moderately
predictive of culture. They achieve 55-65% accu-
racy indicating that the model learns to classify
culture but not very well. This set includes the
visual BoW features, the audio MFCC BoW fea-
tures, and the deep visual Resnet features.

• Feature Set 3: These feature sets are highly pre-
dictive of culture. Models trained on these fea-
tures can differentiate between cultures as seen
by the accuracy value of 65-80%. This includes
the audio MFCC features, audio eGeMAPs fea-
tures, and audio DeepSpectrum features.

We learn that overall the audio feature sets en-
code more information about culture than the vi-
sual features. Furthermore, the visual deep features
encode more information about culture than visual
LLDs and audio deep features are highly predictive
of culture. This indicates that deep learning features
tend to be more biased. As many recent multi-modal
approaches tend to turn towards deep features, the
higher bias encoded by these model is a cause for con-
cern.

5.4 Late-Fusion Debiasing
Late-Fusion Debiasing attempts to make predictions

independent of culture. We primarily evaluate it us-
ing the independence fairness metrics - JS Divergence
and Mean Difference.



Since feature set 3 is the most predictive followed by
feature set 2 we first drop only feature set 3 and then
drop feature sets 2 and 3. The plots for the fairness
metric values can be seen in figure 7.

(a) JS Divergence (b) CCC Difference

(c) Mean Difference (d) MAE Difference

Figure 7: Late Fusion Debiasing Fairness metric perfor-
mance. SVR: All feature sets, FS12: Feature sets 1 and
2, FS1: Only feature set 1.

We see a clear improvement in JS divergence (figure
7a) as we go from all feature sets, to sets 1 and 2, and
finally only set 1. The results are more independent of
culture membership as we drop highly predictive fea-
ture sets. Late-fusion debiasing successfully improves
fairness in results with respect to the JS divergence.
Results are not as unambiguous for the other inde-
pendence metric, mean difference (figure 7c). Feature
set 1 performs the best (lowest value) for valence and
arousal. However for liking the value is already very
low for SVR and it increases when we drop features.

The separation metric, CCC difference (figure 7b)
also shows better performance on dropping highly
culture predictive features for arousal and liking with
a significant improvement in liking on dropping set 3.
MAE difference 7d shows a consistent improvement
when dropping predictive features for arousal but the
contrary for valence and liking.

6 Conclusions
We quantified fairness in the baseline predictions

using different modalities using four fairness metrics
that reflect different fairness criteria. The results in-
dicate that although the baseline model is trained on
balanced data from both cultures, there is a disparity
in performance for different cultures which varies by
modality and metric. Thus, when solving a task it is
crucial to pick a definition of fairness appropriate to
that task and use the modalities which are unbiased
by that definition. Furthermore, late-fusion might be
helping improve fairness in the model predictions as

these values are consistently better than the individ-
ual modalities in figure 2.

We employed the Student’s T-test to identify bias
in the training data which can be the source of bi-
ased predictions. The results show that there is sig-
nificant label bias present for the arousal and liking
labels, with labels for German subjects having a lower
magnitude on average for both dimensions. We also
identify several features that encode bias between the
cultures in the LLD features. Generally, the audio fea-
tures encode more information about culture than the
visual features. Thus although audio features perform
better on these tasks, they have the risk of producing
biased results

This finding is reinforced by evaluating the culture
predictivity of the features sets. Here too the audio
LLD features are most predictive of culture followed
by the audio deep features, and the visual LLD fea-
tures are least predictive. Overall, the deep features
tend to be more predictive of culture and should be
used carefully for future multi-modal research. Fi-
nally, dropping highly culture predictive features dur-
ing late-fusion led to an improved performance on the
JS divergence metric. While our results across all four
metrics are not as conclusive, with respect to JS diver-
gence Late-Fusion Debiasing is a simple and effective
method to reduce bias in model predictions.

7 Contributions

Advait
Rane

Literature Review, Feature Extraction
(LLDs, Deep Features), Culture Pre-
dictivity, Late-Fusion Debiasing

Nghi Le
Fairness Metrics Analysis, Literature
Review, Experimentation with Vari-
ous Debiasing Methods

Armaghan
Asghar

Dataset Exploration, Feature Extrac-
tion(BoW), Statistical Test Analysis

Table 1: Teammate contributions
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